Some identities for multiple Hurwitz-zeta values
نویسندگان
چکیده
منابع مشابه
Algorithms for Some Euler-Type Identities for Multiple Zeta Values
. . . , s k are positive integers with s 1 > 1. For k ≤ n, let E(2n, k) be the sum of all multiple zeta values with even arguments whose weight is 2n and whose depth is k. The well-known result E(2n, 2) = 3ζ(2n)/4was extended to E(2n, 3) and E(2n, 4) by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbers E(2n, k) and then ...
متن کاملBivariate Identities for Values of the Hurwitz Zeta Function and Supercongruences
Abstract. In this paper, we prove a new identity for values of the Hurwitz zeta function which contains as particular cases Koecher’s identity for odd zeta values, the Bailey-Borwein-Bradley identity for even zeta values and many other interesting formulas related to values of the Hurwitz zeta function. We also get an extension of the bivariate identity of Cohen to values of the Hurwitz zeta fu...
متن کاملOn Some Integrals Involving the Hurwitz Zeta
We establish a series of integral formulae involving the Hurwitz zeta function. Applications are given to integrals of Bernoulli polynomials, log Γ(q) and log sin(q).
متن کاملSome Identities for the Riemann Zeta-function
Several identities for the Riemann zeta-function ζ(s) are proved. For example, if s = σ + it and σ > 0, then ∞ −∞ (1 − 2 1−s)ζ(s) s 2 dt = π σ (1 − 2 1−2σ)ζ(2σ). Let as usual ζ(s) = ∞ n=1 n −s (ℜe s > 1) denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of |ζ(1 2 + it)| 2k , k ∈ N, weighted by suitable functions. In particular, the prob...
متن کاملAnalytic continuation of multiple Hurwitz zeta functions
We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Mathematica
سال: 2011
ISSN: 1674-7216
DOI: 10.1360/012011-194